Quantum-Based Relative Inertial Navigation with Velocity-Aided Alignment and Initialization

conference paper
Quantum sensors are expected to offer significant advantages in magnetic- and gravityaided navigation. However, these techniques depend on the local environmental conditions and require an alternative solution to ensure high position accuracy on shorter timescales. This paper explores the potential of a hypothetical quantum Inertial Measurement Unit (IMU) with much better performance than classical IMUs when used for dead reckoning position estimation preceded by an alignment period to achieve a relative inertial navigation solution. We show that significantly reduced noise levels (velocity random walk) for the accelerometer and/or gyroscope cannot be automatically exploited. In practice, axis misalignment and initial state errors in orientation limit performance. Incorrect orientation causes errors in compensating for the gravity vector, having a dominant effect.
This research proposes to introduce an alignment period with a reliable velocity sensor, prior tostarting the mission relying solely on inertial navigation. The orientation errors can be estimated with numerical optimization, in which we match the dead reckoning estimate to the reference velocity signal. The fact that quantum IMUs have a much more accurate measurement means that these orientation errors could be compensated much more accurately. When mitigating these dominant error sources, there is a significant benefit to using a quantum IMU for inertial navigation. The initial position error growth is significantly smaller than existing systems. Some estimates are given for the necessary quality of the IMUs to benefit from these protocols and offer a similar position solution quality to high-end or military-grade IMUs. In the future, military operations that do not rely on Global Navigation Satellite System (GNSS) for their Positioning, Navigation and Timing (PNT) information may be performed with unprecedented position accuracy when using a quantum IMU complemented with velocity-aided alignment period, thereby increasing the effectiveness and dependability of the operation.
TNO Identifier
1006401
ISSN
2673-4591
Article nr.
39
Source title
Engineering Proceedings
Collation
10 p.