Performance study and LCA of a ZigZag PV noise barrier: Towards mass-customization of IIPV applications
article
Photovoltaic noise barriers (PVNB) offer dual functionality in reducing traffic noise and generating renewable electricity. In this research, the potential of ZigZag PVNBs has been investigated. The ZigZag Solar product, developed by Wallvision, has proven to offer multiple advantages in energy yield and aesthetics for building façade applications. For noise barrier applications, the ZigZag structure could offer interesting features in safety and noise cancellation (obtained by filling the ZigZag construction with Rockwool material) on top of the ad vantages in aesthetics and energy yield. A ZigZag PVNB has been designed and constructed at the Brightlands Chemelot Campus in Geleen, after which the electrical performance has been automatically monitored under Dutch climate conditions. The measurements have been compared to simulated data, which allowed optimiza tion of the model. As Rockwool material is used in the ZigZag construction, the thermal model had to be opti mized to reduce significant differences in measured and simulated VMPP data. Temperature measurements by a novel Fiber Bragg technology revealed that temperature differences between measured cell temperature and input temperature for the simulations are between 10 and 20 ◦C. After optimizing the thermal model, the power output of the ZigZag PVNB could be predicted more accurately, resulting in a yearly potential energy yield up to 1066 kWh/kWp. Measured data over the period June 2023 till April 2024 showed an energy yield up to 873 kWh/kWp. A deviation of 18 % between measured yearly energy yield can be related to system losses such as cabling and inverters. Life Cycle Assessment (LCA) of several configurations of a global system, including con crete infrastructure, solar panels, ZigZag cassettes, cabling and converters shows a Global Warming Potential (GWP) score varying from 190 to 290 CO2 eq/kWh, according to the models developed in this study, indicating its interest compared to the Dutch and German electricity mixes. In addition, the energy required to produce and install the ZigZag PVNB system at various lengths has a predicted payback time of 6–10 years (maximum 30 % of the total expected lifetime). The balance of system, in specific the DC/DC converters followed and battery sys tem) followed by the concrete element on which the ZigZag PVNB was mounted are the largest contributors to the carbon footprint of the ZigZag PVNB demonstrator. The carbon footprint could potentially be reduced by using cleaner battery technologies or energy storage systems.
Topics
TNO Identifier
1006267
Source
Applied Energy, 378, pp. 1-14.
Pages
1-14