Boosting thermochemical performance of SrBr2⋅6H2O with a secondary salt hydrate

article
This work systematically investigates the effect of 9 inorganic salt hydrates on the performance of strontium bromide (SrBr2) a thermochemical material (TCM). The goal is to boost the performance of this base salt by enhancing the reaction kinetics of the SrBr2 6-1 transition or by shrinking the reaction hysteresis. The study shows that the added salts that do not share a common ion with SrBr2 (LiCl, LiF, ZnF2, ZnI2, K2CO3) give limited to no benefits. The lack of improvement is due to a side reaction between SrBr2 and the added salt leading to the formation of new salt hydrate with low hygroscopicity that does not contribute to the thermochemical reaction. The addition of hygroscopic bromide salts with divalent cations (ZnBr2, CaBr2, MnBr2) gave mixed results depending on the sample history. The most likely cause is cation exchange between bromide salts occurring during exposure to high vapour pressures which promote ionic mobility. The overall best performance was achieved with the addition of LiBr, which we attribute to its high hygroscopicity.
TNO Identifier
1006114
Source
Solar Energy Materials and Solar Cells, 268, pp. 1-12.
Article nr.
112748
Pages
1-12