The validation of simulation for testing deep learning-based object recognition
conference paper
The military is looking to adopt artificial intelligence (AI)-based computer vision for autonomous systems and decision-support. This transition requires test methods to ensure safe and effective use of such systems. Performance assessment of deep learning (DL) models, such as object detectors, typically requires extensive datasets. Simulated data offers a cost-effective alternative for generating large image datasets, without the need for access to potentially restricted operational data. However, to effectively use simulated data as a virtual proxy for real-world testing, the suitability and appropriateness of the simulation must be evaluated. This study evaluates the use of simulated data for testing DL-based object detectors, focusing on three key aspects: comparing performance on real versus simulated data, assessing the cost-effectiveness of generating simulated datasets, and evaluating the accuracy of simulations in representing reality. Using two automotive datasets, one publicly available (KITTI) and one internally developed (INDEV), we conducted experiments with both real and simulated versions. We found that although simulations can approximate real-world performance, evaluating whether a simulation accurately represents reality remains challenging. Future research should focus on developing validation approaches independent of real-world datasets to enhance the reliability of simulations in testing AI models.
TNO Identifier
1001438
Publisher
SPIE
Source title
SPIE Sensors + Imaging 16 - 19 September 2024 Edinburgh, United Kingdom