A multi-model framework to assess the role of R&D towards a decarbonized energy system

article
Research and development (R&D) investments foster green innovation, which is key to decarbonize the energy system and attain long-term climate goals. In this paper, we link three integrated assessment models that possess a macroeconomic framework—WITCH, MERGE-ETL, and GEM-E3—with the bottom-up technology-rich energy system model TIAM-ECN, in order to quantitatively explore how investments in R&D can support deep decarbonization pathways. We take advantage of the endogenous technological learning feature of the first three models to derive R&D-induced capital cost reductions for strategic clusters of low-carbon technologies: solar energy, on- and offshore wind energy, carbon capture and storage, advanced fuels, and batteries for electric vehicles. We examine scenarios with different assumptions on CO2 mitigation and R&D policy. These assumptions are harmonized among our four models, and capital cost reductions driven by R&D are exogenously incorporated in TIAM-ECN, which enables a detailed assessment of the required energy transition. Our results show that the stringency of climate change mitigation policy remains the key factor influencing the diffusion of low-carbon technologies, while R&D can support mitigation goals and influence the contribution of different types of technologies. If implemented effectively and without worldwide barriers to knowledge spill-overs, R&D facilitates the deployment of mature technologies such as solar, wind, and electric vehicles, and enables lower overall energy system costs. (C) 2023, The Author(s), under exclusive licence to Springer Nature B.V.
TNO Identifier
987054
ISSN
01650009
Source
Climatic Change, 176(7), pp. 1-22.
Publisher
Springer Science and Business Media B.V.
Article nr.
82
Pages
1-22