Compact OWC Receiver: Micro-Lens and PD Array on Glass Interposer

article
In this paper, we propose a compact optical wireless receiver based on micro-lens and photodiode array flip-chipped on a glass interposer. With simulation models and experiments, we verify the performance of two optical wireless communication receivers assembled based on this structure with gigabit and high-speed photodiodes. First, co-integrated gigabit photodiodes and micro-lenses indicate that micro-lenses can deliver a 3.5 dB gain of light collection efficiency to the gigabit photodiode array while keeping the field of view larger than $\pm$18 degrees. Besides, a 5.5 Gbps maximum throughput has been verified by this optical wireless communication receiver with discrete multitone modulation. Moreover, co-integrated high-speed photodiodes and micro-lenses prove that micro-lenses realize a 26.6 dB improvement in light collection efficiency, enabling a 10 Gbps error-free connection using as little as -0.5 dBm transmission power. Those results conclude that the co-integration of micro-lenses on the photodiode array can enhance the light collection efficiency of the photodiode array while keeping a larger field of view, providing a high-performance, low-cost solution for the receiver of optical wireless links.
TNO Identifier
986695
Source
Journal of latex class files, 14(8)
Publisher
IEEE
Collation
8 p.
Files
To receive the publication files, please send an e-mail request to TNO Repository.