Understanding behavioral patterns in truck co-driving networks
conference paper
This paper examines the co-driving behavior of truck drivers using network analysis. From a unique spatiotemporal dataset encompassing more than 10 million measurements of trucks passing 17 different highway locations in the Netherlands, we extract a so-called co-driving network. In this network, nodes are truck drivers and edges represent pairs of trucks that are systematically driving together. The obtained co-driving network structure has various properties common to real-world networks, such as a dominant giant component and a power law degree distribution. Moreover, network distance metrics and community detection reveal that the network has a highly modular structure. We furthermore propose a method for understanding the network community structure through attribute assortativity. Results indicate that co-driving links are mostly established based on geographical aspects: truck drivers from the same country or the same region in the Netherlands are more inclined to drive together. The resulting improved understanding of co-driving behavior has important implications for society and the environment, as trucks coordinating their driving behavior together help reduce traffic congestion and optimize fuel usage. © Springer Nature Switzerland AG 2019.
TNO Identifier
844226
ISSN
1860949X ; 9783030054137
Source
7th International Conference on Complex Networks and their Applications, COMPLEX NETWORKS 2018, 11 December 2018 through 13 December 2018, 813, pp. 223-235.
Publisher
Springer Verlag
Source title
Studies in Computational Intelligence
Editor(s)
Aiello, L.M.
Cherifi, H.
Lio, P.
Rocha, L.M.
Cherifi, C.
Lambiotte, R.
Cherifi, H.
Lio, P.
Rocha, L.M.
Cherifi, C.
Lambiotte, R.
Pages
223-235
Files
To receive the publication files, please send an e-mail request to TNO Repository.