The Semantic Snake Charmer Search Engine : A Tool to Facilitate Data Science in High-tech Industry Domains
conference paper
The booming popularity of data science is also affecting high-tech industries. However, since these usually have different core competencies — building cyber-physical systems rather than e.g. machine learning or data mining algorithms — delving into data science by domain experts such as system engineers or architects might be more cumbersome than expected. In order to help domain experts to delve into data science we designed the Semantic Snake Charmer (SSC), a domain knowledgebased search engine for Jupyter Notebooks. SSC is composed of three modules: (1) a human-machine cooperative module to identify internal documentation which contains the most relevant domain knowledge, (2) a natural language processing module capable of transforming relevant documentation into several semantic graph types, (3) a reinforcement-learning based search engine which learns, given user feedback, the best mapping between input queries and semantic graph type to rely on. We believe SSC can be a fundamental asset to allow the easy landing of data science in industrial domains.
Topics
TNO Identifier
843090
Publisher
ACM New York
Collation
5 p.
Place of publication
New York
Files
To receive the publication files, please send an e-mail request to TNO Repository.