Strong spin-photon coupling in silicon

article
Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers.
TNO Identifier
787782
ISSN
00368075
Source
Science, 359(6380), pp. 1123-1127.
Publisher
American Association for the Advancement of Science AAAS
Collation
8 p.
Pages
1123-1127
Files
To receive the publication files, please send an e-mail request to TNO Repository.