Organic ferroelectric/semiconducting nanowire hybrid layer for memory storage
article
Ferroelectric materials are important components of sensors, actuators and non-volatile memories. However, possible device configurations are limited due to the need to provide screening charges to ferroelectric interfaces to avoid depolarization. Here we show that, by alternating ferroelectric and semiconducting nanowires over an insulating substrate, the ferroelectric dipole moment can be stabilized by injected free charge carriers accumulating laterally in the neighboring semiconducting nanowires. This lateral electrostatic coupling between ferroelectric and semiconducting nanowires offers new opportunities to design new device architectures. As an example, we demonstrate the fabrication of an elementary non-volatile memory device in a transistor-like configuration, of which the source-drain current exhibits a typical hysteretic behavior with respect to the poling voltage. The potential for size reduction intrinsic to the nanostructured hybrid layer offers opportunities for the development of strongly miniaturized ferroelectric and piezoelectric devices. cop. 2016 The Royal Society of Chemistry.
Topics
TNO Identifier
534564
ISSN
20403364
Source
Nanoscale, 8(11), pp. 5968-5976.
Publisher
Royal Society of Chemistry
Pages
5968-5976
Files
To receive the publication files, please send an e-mail request to TNO Repository.