CFD analysis and flow model reduction for surfactant production in helix reactor = CFD analiza i redukcija modela strujanja za proizvodnju surfaktanta u helix reaktoru

article
Flow pattern analysis in a spiral Helix reactor is conducted, for the application in commercial surfactant production. Step change response curves (SCR) were obtained from numerical tracer experiments by three-dimensional computational fluid dynamics (CFD) simulations. Non-reactive flow is simulated, though viscosity is treated as variable in the direction of flow, as it increases during the reaction. The design and operating parameters (reactor diameter, number of coils and inlet velocity) are varied in CFD simulations, in order to examine the effects on the flow pattern. Given that 3D simulations are not practical for fast computations needed for optimization, scale-up and control, CFD flow model is reduced to one-dimensional axial dispersion (AD) model with spatially variable dispersion coefficient. The dimensionless dispersion coefficient (Pe) is estimated under different conditions and results are analyzed. Finally, a correlation relating the Pe number with the Reynolds number and number of coils from the reactor entrance is proposed for the particular reactor application and conditions.
TNO Identifier
529496
ISSN
14519372
Source
Chemical Industry and Chemical Engineering Quarterly, 21(1), pp. 35-44.
Publisher
Association of the Chemical Engineers of Serbia AChE
Collation
10 p.
Pages
35-44
Files
To receive the publication files, please send an e-mail request to TNO Repository.