Towards Control-Oriented Modeling of Natural Gas-Diesel RCCI Combustion
article
For natural gas (NG)-diesel RCCI, a multi-zonal, detailed chemistry modeling approach is presented. This dual fuel combustion process requires further understanding of the ignition and combustion processes to maximize thermal efficiency and minimize (partially) unburned fuel emissions. The introduction of two fuels with different physical and chemical properties makes the combustion process complicated and challenging to model. In this study, a multi-zone approach is applied to NG-diesel RCCI combustion in a heavy-duty engine. Auto-ignition chemistry is believed to be the key process in RCCI. Starting from a multi-zone
model that can describe auto-ignition dominated processes, such as HCCI and PCCI, this model is adapted by including reaction mechanisms for natural gas and NOx and by improving the incylinder pressure prediction. The model is validated using NG-diesel RCCI measurements that are performed on a 6 cylinder heavy-duty engine. For three different engine operating points, it is operated at various diesel injection
timings and NG-diesel blend ratios. The validation is focused on variables that are relevant for engine control, such as CA50, peak cylinder pressure, and engine-out NOx emissions. The validation shows that the multi-zone method with detailed chemistry reproduces the correct trends for important control parameters. From this
validated model, real-time, map-based RCCI models are derived, which are considered to be an important step towards model-based NG-diesel RCCI control development.
model that can describe auto-ignition dominated processes, such as HCCI and PCCI, this model is adapted by including reaction mechanisms for natural gas and NOx and by improving the incylinder pressure prediction. The model is validated using NG-diesel RCCI measurements that are performed on a 6 cylinder heavy-duty engine. For three different engine operating points, it is operated at various diesel injection
timings and NG-diesel blend ratios. The validation is focused on variables that are relevant for engine control, such as CA50, peak cylinder pressure, and engine-out NOx emissions. The validation shows that the multi-zone method with detailed chemistry reproduces the correct trends for important control parameters. From this
validated model, real-time, map-based RCCI models are derived, which are considered to be an important step towards model-based NG-diesel RCCI control development.
Topics
TNO Identifier
524645
ISSN
0148-7191
Source
SAE Technical Paper
Article nr.
2015-01-1745
Collation
12 p.
Files
To receive the publication files, please send an e-mail request to TNO Repository.