Recent Advances in Atmospheric Vapor-Phase Deposition of Transparent and Conductive Zinc Oxide
article
The industrial need for high-throughput and low-cost ZnO deposition processes has triggered the development of atmospheric vapor-phase deposition techniques which can be easily applied to continuous, in-line manufacturing. While atmospheric CVD is a mature technology, new processes for the growth of transparent conductive oxides on thermally sensitive materials or flexible substrates are being developed, such as atmospheric plasma-enhanced (PE)-CVD and
atmospheric spatial atomic layer deposition (ALD). In this article, the challenges and recent results on the growth of ZnO under atmospheric pressure by CVD, PE-CVD, and spatial ALD are reviewed and the use of these films as transparent electrodes in thin film solar cells are presented.
atmospheric spatial atomic layer deposition (ALD). In this article, the challenges and recent results on the growth of ZnO under atmospheric pressure by CVD, PE-CVD, and spatial ALD are reviewed and the use of these films as transparent electrodes in thin film solar cells are presented.
TNO Identifier
512016
Source
Chemical Vapor Deposition, 20
Publisher
Wiley
Files
To receive the publication files, please send an e-mail request to TNO Repository.