Transmission electron microscopy on early-stage tin oxide film morphology grown by atmospheric pressure chemical vapor deposition
article
Nucleation and morphology development during the early stages of chemical vapor deposition (CVD) processes are believed to be of major importance for the overall film properties. Here, the authors have investigated the nucleation of tin oxide films, comparing different tin precursors (tin tetrachloride (TTC) and monobutyl tin trichloride (MBTC)) and focusing on the effect of methanol addition on the film morphology. Employing electron transparent silicon oxide membranes as substrates and combining transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis on the same set of samples, we describe a detailed picture of nucleation behavior and film growth during early stages of film formation. Our main conclusion is that methanol addition during deposition acts as surfactant, lowering the surface energy of the substrate and resulting in a higher nucleation grain density. Based on these results, we propose a film growth model based on surface energy to explain morphology differences in tin oxide films resulting from methanol addition. cop. 2014 Elsevier B.V.
TNO Identifier
507077
ISSN
01694332
Source
Applied Surface Science, 309, pp. 263-270.
Publisher
Elsevier
Pages
263-270
Files
To receive the publication files, please send an e-mail request to TNO Repository.