Forced convection mass deposition and heat transfer onto a cylinder sheathed by protective garments
article
In chemical, biological, radiological, and nuclear protective clothing, a layer of activated carbon material in between two textile layers provides protection against hazardous gases. A cylinder in cross flow, sheathed by such material, is generally used to experimentally test the garment properties. This is, however, complicated and predictive models are needed. We present a computational fluid dynamics model for the initial phase in which the carbon filter material is not yet saturated. The textiles are modeled as chemically inactive porous layers, the carbon filter particles have been resolved explicitly. The model has been validated against experimental data. We demonstrate that (1) computational fluid dynamics simulations can be used for the efficient design and optimization of protective garments, and (2) the addition of a highly porous active carbon layer highly increases the chemical protection capabilities, while having relatively little negative impact on the thermal comfort of protective garments. © 2013 American Institute of Chemical Engineers AIChE J, 60: 353-361, 2014 © 2013 American Institute of Chemical Engineers 60 1 January 2014 10.1002/aic.14246 Transport Phenomena and Fluid Mechanics Transport Phenomena and Fluid Mechanics © 2013 American Institute of Chemical Engineers.
Topics
TNO Identifier
485026
ISSN
0001-1541
Source
AIChE Journal, 60(1)
Collation
353-361
Files
To receive the publication files, please send an e-mail request to TNO Repository.