Experimental study into a hybrid PCCI/CI concept for next-generation heavy-duty diesel engines

conference paper
This paper presents the first results of an experimental study into a hybrid combustion concept for next-generation heavy-duty diesel engines. In this hybrid concept, at low load operating conditions, the engine is run in Pre-mixed Charge Compression Ignition (PCCI) mode, whereas at high load conventional CI combustion is applied. This study was done with standard diesel fuel on a flexible multi-cylinder heavy-duty test platform. This platform is based on a 12.9 liter, 390 kW heavy-duty diesel engine that is equipped with a combination of a supercharger, a two-stage tubocharging system and lowpressure and highpressure EGR circuitry. Furthermore, Variable Valve Actuation (VVA) hardware is installed to have sufficìent control authority. Dedicated pistons, injector nozzles and VVA cam were selected to enable PCCI oombustion for a late DI injection strategy, free of wall-wetting problems. The decision to use a multicylinder configuration instead of a single cylinder research engine was taken because thìs allows to assess the impact of limitations in operating range of current turbocharger equipment and that of cylinder interaction. It also allowed to assess control issues relevant for future production engines.
First results are shown for four low load ESC operating points, Injection timing, EGR rate and effective compression ratio are varied to find suitable PCCI operating conditions with this equipment. The effect of these control parameters on combustion phasing, heat release, emissions (NOx, HC, CO, smoke), and fuel consumption is presented. Similar trade-offs are determined for conventional CI combustion at
higher loads. From the experimental results, it is concluded that PCCI combustion is succcessfuly realized up to 25% load, corresponding to 5.6 bar BMEP. Further optimization of TC matching and combustion is needed to improve PCCI fuel efficiency and especially high load CI operation.
TNO Identifier
462688
Publisher
SAE International
Article nr.
2012-01-1114
Source title
SAE 2011 World Congress and Exhibition, 12-14 April, 2011, Detroit, MI, USA
Collation
19 p.
Files
To receive the publication files, please send an e-mail request to TNO Repository.