An ultra low energy biomedical signal processing system operating at near-threshold
article
This paper presents a voltage-scalable digital signal processing system designed for the use in a wireless sensor node (WSN) for ambulatory monitoring of biomedical signals. To fulfill the requirements of ambulatory monitoring, power consumption, which directly translates to the WSN battery lifetime and size, must be kept as low as possible. The proposed processing platform is an event-driven system with resources to run applications with different degrees of complexity in an energy-aware way. The architecture uses effective system partitioning to enable duty cycling, single instruction multiple data (SIMD) instructions, power gating, voltage scaling, multiple clock domains, multiple voltage domains, and extensive clock gating. It provides an alternative processing platform where the power and performance can be scaled to adapt to the application need. A case study on a continuous wavelet transform (CWT)-based heart-beat detection shows that the platform not only preserves the sensitivity and positive predictivity of the algorithm but also achieves the lowest energy/sample for ElectroCardioGram (ECG) heart-beat detection publicly reported today. © 2011 IEEE.
Topics
Biomedical signal processingElectroCardioGram (ECG) processingLow powerLow voltageMulti-power domainMulti-voltage domainNear-threshold designBiomedical signal processingLow PowerLow voltagesMulti-power domainMulti-voltageBioelectric phenomenaDigital signal processingElectric network synthesisElectrocardiographyMicroprocessor chipsSensor nodesSystems analysisWavelet transformsSignal detection
TNO Identifier
461369
ISSN
19324545
Source
IEEE Transactions on Biomedical Circuits and Systems, 5(6), pp. 546-554.
Article nr.
No.: 6104198
Collation
9 p.
Pages
546-554
Files
To receive the publication files, please send an e-mail request to TNO Repository.