Active deceleration support in car following

article
A haptic gas pedal feedback system is developed that provides car-following information via haptic cues from the gas pedal. During normal car-following situations, the haptic feedback (HF) cues were sufficient to reduce control activity and improve car-following performance. However, in more critical following situations, drivers use the brake pedal to maintain separation with the lead vehicle. A deceleration control (DC) algorithm is designed that, in addition to the HF, provided increased deceleration upon release of the gas pedal during car-following situations that required faster deceleration than releasing the gas pedal alone would do. For the design, a driver model for car following in different situations was estimated from driving simulator data. A Monte Carlo analysis with the driver model yielded subjective decision points, where drivers released the gas pedal to start pressing the brakes. This enabled the definition of a reaction field, which determined the needed deceleration input for the DC algorithm. The tuned DC algorithm was tested in a fixed-base driving simulator experiment. It was shown that the active deceleration support improved the car-following performance while reducing the driver brake pedal input magnitude in the conditions tested.
TNO Identifier
425145
ISSN
10834427
Source
IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans, 40(6), pp. 1271-1284.
Article nr.
No.: 5451062
Pages
1271-1284
Files
To receive the publication files, please send an e-mail request to TNO Repository.