Global Intensity Correction in Dynamic Scenes

article
Changing image intensities causes problems for many computer vision applications operating in unconstrained environments. We propose generally applicable algorithms to correct for global differences in intensity between images recorded with a static or slowly moving camera, regardless of the cause of intensity variation. The proposed intensity correction is based on intensity quotient estimation. Various intensity estimation methods are compared. Usability is evaluated with background classification as example application. For this application we introduced the PIPE error measure evaluating performance and robustness to parameter setting. Our approach retains local intensity information, is always operational and can cope with fast changes in intensity. We show that for intensity estimation, robustness to outliers is essential for dynamic scenes. For image sequences with changing intensity, the best performing algorithm (MofQ) improves foreground-background classification results up to a factor two to four on real data.
TNO Identifier
93810
Source
International Journal of Computer Vision, 86(January), pp. 33-47.
Pages
33-47