Air-Stable Complementary-like Circuits Based on Organic ; Ambipolar Transistors
article
To date there are two demonstrated technologies for the fabrication of organic integrated circuits: the unipolar and the complementary technology. Unipolar architectures consist of p-channel organic field-effect transistors (OFETs), which are simple to fabricate since they require a single, high-workfunction metal (e.g., gold) and a single semiconductor material, which can be either evaporated or solution-processed.[1–4] Despite this great advantage, unipolar circuits have poor performance, exhibiting a narrow noise margin, low yield, and high power consumption.[2] In order to improve their performance, more sophisticated architectures are usually employed.[5] Although beneficial, such an approach increases circuit complexity by nearly 100 %. Complementary architectures, adopted from silicon microelectronics, solve this bottleneck by providing major advantages in circuit performance, including wide noise margin, robustness, and low power dissipation.[6,7] Unlike silicon technology, however, fabrication of discrete organic n- and p-channel transistors with lateral dimensions of a few micrometers, typically required for largescale integration, is still very challenging.
TNO Identifier
441293
Source
Advanced Materials, pp. 1900-1904.
Pages
1900-1904
Files
To receive the publication files, please send an e-mail request to TNO Repository.