Experimental set-up for testing alignment and measurement stability of a metrology system in Silicon Carbide for GAIA

conference paper
The GAI A satellite will make a 3-D map of our Galaxy with measurement accuracy of 10 microarcseconds using two astrometric telescopes. The angle between the lines-of-sight of the two telescopes will be monitored using the Basic Angle Monitoring system with 1 microarcsecond accuracy. This system will be an interferometer consisting of a number of small mirrors and beam splitters in Silicon Carbide. Silicon Carbide has very high specific stiffness and very good thermal properties (low CTE and high conductivity). It also is a very stable material. A possible concept design for this Basic Angle Monitoring system is subject of a PhD study performed at the Technische Universiteit Eindhoven and TNO Science and Industry (The Netherlands). To prove that this concept design meets the alignment and measurement stability requirements, the GAIA extreme stability optical bench is developed. It will consist of a fourfold Michelson interferometer with four separate optical paths, which will measure the stability of the optical bench and the individual optical components. Also thermal cycling experiments and vibrations tests will be performed. 'Absolute' position measurements of the optical components with respect to the optical bench after the vibrations test will be performed using markers. The GAIA extreme stability optical bench will be placed in a vibration damped vacuum tank in order to imitate the highly stable L2 space environment. The goal is to obtain the first results early 2006.
TNO Identifier
239045
ISSN
0277786X
Article nr.
No.: 587-701
Source title
Optomechanics 2005, 3-4 August 2005, San Diego, CA, USA
Editor(s)
Hatheway, A.E.
Pages
1-12