A simple model to estimate exchange rates of nitrogen dioxide between the atmosphere and forests

article
A simple model (2layer) was constructed that describes the exchange of the reactive gases NO, NO2 and O3 between forest and the atmosphere. The model uses standard equations to describe exchange processes and uptake of gases. It also takes into account reactions taking place in the trunk space between NO and O3 and photolysis of NO2. All equations are solved analytically leading to a scheme efficient enough to allow implementation in a large scale dispersion model such as the EMEP model. The model is tested on two comprehensive datasets obtained in a coniferous forest and a deciduous forest. The model calculations of NO2 and O 3 fluxes to the forest were compared with observations of these fluxes. Although the comparison is often not perfect some of the striking features of the observed fluxes i.e. upward fluxes of NO2 were simulated quite well. The impact of chemical reactions between O3, NO and NO2 in the trunk space appear to have a significant effect on the deposition rate of O3. This is especially true during the night and more so for forests emitting large amounts of NO.
Topics
TNO Identifier
238649
ISSN
18106277
Source
Biogeosciences Discussions, 2(4), pp. 1033-1065.
Pages
1033-1065