Modelling fungal solid-state fermentation: The role of inactivation kinetics

article
The theoretical mathematical models described in this paper are used to evaluate the effects of fungal biomass inactivation kinetics on a non- isothermal tray solid-state fermentation (SSF). The inactivation kinetics, derived from previously reported experiments done under isothermal conditions and using glucosamine content to represent the amount of biomass, are described in different ways leading to four models. The model predictions show only significant effects of inactivation kinetics on temperature and biomass patterns in the tray SSF after long fermentation periods. The models in which inactivation is triggered by low specific growth rates can predict restricted biomass evolution in combination with a fast temperature increase followed by a slower temperature decrease. Such inactivation might occur when substrate is limiting or products are formed in toxic concentrations. Temperature is predicted to be the key parameter. Oxygen concentration is predicted to become limiting only at high heat conduction and low oxygen diffusion rates. Desiccation of the substrate is predicted not to occur.
TNO Identifier
234859
ISSN
0178515X
Source
Bioprocess Engineering, 20(5), pp. 391-404.
Pages
391-404
Files
To receive the publication files, please send an e-mail request to TNO Repository.