- document
-
Harvey-Collard, P. (author), Dijkema, J. (author), Zheng, G. (author), Sammak, A. (author), Scappucci, G. (author), Vandersypen, L.M.K. (author)We report the coherent coupling of two electron spins at a distance via virtual microwave photons. Each spin is trapped in a silicon double quantum dot at either end of a superconducting resonator, achieving spin-photon couplings up to around gs/2π = 40 MHz. As the two spins are brought into resonance with each other, but detuned from the...article 2022
- document
- Pita-Vidal, M. (author), Bargerbos, A. (author), Yang, C.-K. (author), van Woerkom, D.J. (author), Pfaff, W. (author), Haider, S.N. (author), Krogstrup, P. (author), Kouwenhoven, L.P. (author), de Lange, G. (author), Kou, A. (author) article 2020
- document
-
Kroll, J.G. (author), Borsoi, F. (author), van der Enden, K.L. (author), Uilhoorn, W. (author), de Jong, D. (author), Quintero-Perez, M. (author), van Woerkom, D.J. (author), Bruno, A. (author), Plissard, S.R. (author), Car, D. (author), Bakkers, E.P.A.M. (author), Cassidy, M.C. (author), Kouwenhoven, L.P. (author)Superconducting coplanar-waveguide resonators that can operate in strong magnetic fields are important tools for a variety of high-frequency superconducting devices. Magnetic fields degrade resonator performance by creating Abrikosov vortices that cause resistive losses and frequency fluctuations or suppress the superconductivity entirely. To...article 2019