Title
Magnetic field resilient superconducting coplanar waveguide resonators for hybrid cQED experiments
Author
Kroll, J.G.
Borsoi, F.
van der Enden, K.L.
Uilhoorn, W.
de Jong, D.
Quintero-Perez, M.
van Woerkom, D.J.
Bruno, A.
Plissard, S.R.
Car, D.
Bakkers, E.P.A.M.
Cassidy, M.C.
Kouwenhoven, L.P.
Publication year
2019
Abstract
Superconducting coplanar-waveguide resonators that can operate in strong magnetic fields are important tools for a variety of high-frequency superconducting devices. Magnetic fields degrade resonator performance by creating Abrikosov vortices that cause resistive losses and frequency fluctuations or suppress the superconductivity entirely. To mitigate these effects, we investigate lithographically defined artificial defects in resonators fabricated from NbTiN superconducting films. We show that by controlling the vortex dynamics, the quality factor of resonators in perpendicular magnetic fields can be greatly enhanced. Coupled with the restriction of the device geometry to enhance the superconductors critical field, we demonstrate stable resonances that retain quality factors ?105 at the single-photon power level in perpendicular magnetic fields up to Bƒ ~ 20mT and parallel magnetic fields up to B ~ 6 T. We demonstrate the effectiveness of this technique for hybrid systems by integrating an In-Sb nanowire into a field-resilient superconducting resonator and use it to perform fast charge readout of a gate-defined double quantum dot at B = 1T.
Subject
Antimony compounds
Coplanar waveguides
Electrodynamics
Hybrid systems
Indium compounds
Magnetic circuits
Magnetic fields
Niobium compounds
Nitrogen compounds
Particle beams
Resonators
Semiconductor quantum dots
Superconducting devices
Superconducting films
Timing circuits
Titanium compounds
Vortex flow
To reference this document use:
http://resolver.tudelft.nl/uuid:ede90143-4007-46d9-b536-2d6b30a9b520
DOI
https://doi.org/10.1103/physrevapplied.11.064053
TNO identifier
868184
Publisher
American Physical Society APS
ISSN
2331-7019
Source
Physical Review Applied, 11 (11)
Document type
article