Title
A fluid system with coupled input and output, and its application to bottlenecks in ad hoc networks
Author
Mandjes, M.
Roijers, F.
TNO Informatie- en Communicatietechnologie
Publication year
2007
Abstract
This paper studies a fluid queue with coupled input and output. Flows arrive according to a Poisson process, and when n flows are present, each of them transmits traffic into the queue at a rate c/(n+1), where the remaining c/(n+1) is used to serve the queue. We assume exponentially distributed flow sizes, so that the queue under consideration can be regarded as a system with Markov fluid input. The rationale behind studying this queue lies in ad hoc networks: bottleneck links have roughly this type of sharing policy. We consider four performance metrics: (i) the stationary workload of the queue, (ii) the queueing delay, i.e., the delay of a 'packet' (a fluid particle) that arrives at the queue at an arbitrary point in time, (iii) the flow transfer delay, i.e., the time elapsed between arrival of a flow and the epoch that all its traffic has been put into the queue, and (iv) the sojourn time, i.e., the flow transfer time increased by the time it takes before the last fluid particle of the flow is served. For each of these random variables we compute the Laplace transform. The corresponding tail probabilities decay exponentially, as is shown by a large-deviations analysis. © Springer Science+Business Media, LLC 2007.
Subject
Ad hoc networks
Flow-level analysis
Fluid queues
Sojourn times
To reference this document use:
http://resolver.tudelft.nl/uuid:e943610b-b0e9-43be-8612-0e2ed5b9c814
DOI
https://doi.org/10.1007/s11134-007-9034-9
TNO identifier
240003
Source
Queueing Systems, 56 (2), 79-92
Document type
article