Title
Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 mouse
Author
TNO Kwaliteit van Leven
Silva, M.J.
Brodt, M.D.
Wopenka, B.
Thomopoulos, S.
Williams, D.
Wassen, M.H.M.
Ko, M.
Kusano, N.
Bank, R.A.
Publication year
2006
Abstract
To examine the link between bone material properties and skeletal fragility, we analyzed the mechanical, histological, biochemical, and spectroscopic properties of bones from a murine model of skeletal fragility (SAMP6). Intact bones from SAMP6 mice are weak and brittle compared with SAMR1 controls, a defect attributed to reduced strength of the bone matrix. The matrix weakness is attributed primarily to poorer organization of collagen fibers and reduced collagen content. Introduction: The contribution of age-related changes in tissue material properties to skeletal fragility is poorly understood. We previously reported that bones from SAMP6 mice are weak and brittle versus age-matched controls. Our present objectives were to use the SAMP6 mouse to assess bone material properties in a model of skeletal fragility and to relate defects in the mechanical properties of bone to the properties of demineralized bone and to the structure and organization of collagen and mineral. Materials and Methods: Femora from 4- and 12-month-old SAMR1 (control) and SAMP6 mice were analyzed using bending and torsional mechanical testing of intact bones, tensile testing of demineralized bone, quantitative histology (including collagen fiber orientation), collagen cross-links biochemistry, and Raman spectroscopic analysis of mineral and collagen. Results: Intact bones from SAMP6 mice have normal elastic properties but inferior failure properties, with 60% lower fracture energy versus SAMR1 controls. The strength defect in SAMP6 bones was associated with a 23% reduction in demineralized bone strength, which in turn was associated with poorer collagen fiber organization, lower collagen content, and higher hydroxylysine levels. However, SAMP6 have normal levels of collagen cross-links and normal apatite mineral structure. Conclusions: Bones from SAMP6 osteoporotic mice are weak and brittle because of a defect in the strength of the bone matrix. This defect is attributed primarily to poorer organization of collagen fibers and reduced collagen content. These findings highlight the role of the collagen component of the bone matrix in influencing skeletal fragility. © 2006 American Society for Bone and Mineral Research. Chemicals / CAS: apatite, 64476-38-6; collagen, 9007-34-5; hydroxylysine, 28902-93-4; Collagen, 9007-34-5.
Subject
Biomedical Research
Aging
Bone strength
Collagen orientation
Cross-links
Demineralized bone
apatite
collagen
collagen fiber
hydroxylysine
age
animal experiment
animal model
animal tissue
article
biomechanics
bone demineralization
bone matrix
bone mineral
bone strength
controlled study
cross linking
femur
fracture
histology
male
mouse
mouse strain
nonhuman
osteogenesis imperfecta
osteoporosis
quantitative analysis
Raman spectrometry
spectroscopy
tensile strength
Animals
Bone Resorption
Collagen
Femur
Male
Mice
Mice, Mutant Strains
Osteoporosis
Tensile Strength
To reference this document use:
http://resolver.tudelft.nl/uuid:e93afee6-3147-4dbf-b54a-5a13218f5ad0
DOI
https://doi.org/10.1359/jbmr.050909
TNO identifier
239078
ISSN
0884-0431
Source
Journal of Bone and Mineral Research, 21 (21), 78-88
Document type
article