Title
Robust online face tracking-by-detection
Author
Comaschi, F.
Stuijk, S.
Basten, T.
Corporaal, H.
Publication year
2016
Abstract
The problem of online face tracking from unconstrained videos is still unresolved. Challenges range from coping with severe online appearance variations to coping with occlusion. We propose RFTD (Robust Face Tracking-by-Detection), a system which combines tracking and detection into a single framework to robustly track a face from unconstrained videos. RFTD is based on the idea that adaptive and stable algorithmic components can complement each other in the task of online tracking. An online Structured Output SVM (SO-SVM) is combined with an offline trained face detector to break the self-learning loop typical in tracking. In turn, the face detector is supervised by a Deformable Part Model (DPM) landmark detector to asses the reliability of the face detection output. Extensive evaluation shows that RFTD delivers consistently good tracking performances across different scenarios, i.e., high mean success rate and lowest standard deviation across benchmark videos.
Subject
2016 ICT
ESI - Embedded Systems Innovations
TS - Technical Sciences
Informatics
Industrial Innovation
Deformable models
Face tracking
Structured output SVM
Tracking-by-detection
To reference this document use:
http://resolver.tudelft.nl/uuid:c5dc53b4-56f7-4452-aacf-6e7d0b18f206
DOI
https://doi.org/10.1109/icme.2016.7552914
TNO identifier
572360
Publisher
IEEE Computer Society
ISBN
9781467372589
ISSN
1945-7871
Source
2016 IEEE International Conference on Multimedia and Expo, ICME 2016, 11 July 2016 through 15 July 2016
Article number
7552914
Document type
conference paper