Title
CO2 Neutral Heavy-Duty Engine Concept with RCCI Combustion Using Seaweed-based Fuels
Author
Seykens, X.
Bekdemir, C.
Han, J.
Willems, R.
van Hal, J.
Publication year
2020
Abstract
This paper focusses on the application of bioalcohols (ethanol and butanol) derived from seaweed in Heavy-Duty (HD) Compression Ignition (CI) combustion engines. Seaweed-based fuels do not claim land and are not in competition with the food chain. Currently, the application of high octane bioalcohols is limited to Spark Ignition (SI) engines. The Reactivity Controlled Compression Ignition (RCCI) combustion concept allows the use of these low carbon fuels in CI engines which have higher efficiencies associated with them than SI engines. This contributes to the reduction of tailpipe CO2 emissions as required by (future) legislation and reducing fuel consumption, i.e. Total-Cost-of-Ownership (TCO). Furthermore, it opens the HD transport market for these low carbon bioalcohol fuels from a novel sustainable biomass source. In this paper, both the production of seaweed-based fuels and the application of these fuels in CI engines is discussed. Ethanol and butanol are considered as the most viable fuels derived from seaweed. The potential of these fuels has been evaluated for the dual-fuel RCCI mode regarding efficiency and NOx emissions. The operating conditions that have been varied are mainly the fuel blend ratio (BR), fuel injection timing, and EGR rate on both a HD single-cylinder and on a HD multi-cylinder engine. The results for E85/diesel-RCCI demonstrate that CI engine-like efficiencies are feasible. The gross Indicated Thermal Efficiency (ITE) reaches up to 52% and 46.5% using E85 in a single-cylinder and a multi-cylinder engine, respectively. The first results using biomass based butanol show greater difficulty in realizing targeted efficiencies on the multicylinder engine due to the higher fuel reactivity and higher boiling temperature than ethanol. The gross ITE reaches up to 51.6% and 38.5% using butanol in a single-cylinder and a multi-cylinder engine, respectively. The demonstrated potential of seaweed-based fuels is an important driver for upscaling the production process of these fuels. Furthermore, future development activities will focus on improving the brake thermal efficiency of the RCCI engine running on seaweed-based fuels. Improving the low reactivity fuel-air mixture preparation will be key to achieve this.
Subject
Bioethanol
Carbon dioxide
Efficiency
Ethanol fuels
Exhaust systems (engine)
Ignition
Seaweed
Brake thermal efficiency
Compression ignition
Development activity
Fuel injection timing
Indicated thermal efficiency
Multicylinder engine
Targeted efficiency
Total cost of ownership
Engine cylinders
To reference this document use:
http://resolver.tudelft.nl/uuid:b5863af7-073b-4f3c-9cc3-d39b8575af65
DOI
https://doi.org/10.4271/2020-01-0808
TNO identifier
955309
Publisher
SAE International
ISSN
0148-7191
Source
SAE Technical Papers, SAE 2020 World Congress Experience, WCX 2020, 21 April 2020 through 23 April 2020
Document type
conference paper