Title
Local buckling of fire-exposed aluminum members: New design model
Author
Maljaars, J.
Soetens, F.
Snijder, H.H.
TNO Bouw en Ondergrond
Publication year
2010
Abstract
Design models for local buckling of fire-exposed aluminum sections are currently lacking. Based on analyses with validated finite-element models, this paper investigates local buckling of extruded sections with stress-strain relationships representative for fire-exposed aluminum alloys. Due to the fact that these stress-strain relationships are more curved than at ambient temperature, existing design models developed for ambient temperature cannot be used for fire design. This paper presents a new design model for local buckling under fire conditions. The study concludes that the local buckling resistance decreases less fast than the plastic capacity at increasing temperature. This is mainly due to the fact that the ratio between the modulus of elasticity and the 0.2% proof stress increases with increasing temperature for structural aluminum alloys. © 2010 ASCE.
Subject
Architecture
Aluminum structures
Elevated temperature
Fire design
Local buckling
Metal Structures
To reference this document use:
http://resolver.tudelft.nl/uuid:b48cab2e-26d7-416d-aa16-bddaaedfd43e
DOI
https://doi.org/10.1061/(asce)st.1943-541x.0000091
TNO identifier
425600
Source
Journal of Structural Engineering, 136 (1), 66-75
Document type
article