Title
Design trade-offs in amorphous indium gallium zinc oxide thin film transistor based bio-signal sensing front-ends
Author
Zulqarnain, M.
Stanzione, S.
van der Steen, J.L.P.J.
Gelinck, G.H.
Abdinia, S.
Cantatore, E.
Publication year
2019
Abstract
With the advent of the Internet of things, wearable sensing devices are gaining importance in our daily lives for applications like vital signal monitoring during sport and health diagnostics. Amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs) fabricated on flexible large-area substrates are a very interesting platform to build wearable sensing devices due to their flexibility, conformability to the human body, and low cost. For this paper four different bio-signal sensing front-end circuits based on a-IGZO TFTs are designed, fabricated, measured and compared, focusing on three performance indicators which are in a trade-off: power efficiency factor (PEF), area occupation and input impedance. Considering a 200 Hz bandwidth, the measured PEF varies between 4.710 5 and 7.510 6 . The area occupation spans from 4.2 to 37 mm 2 , while the input impedance at 1 Hz varies from 5.3 to 55.3 M?. The front-ends based on diode-load amplifiers are compact but have the lowest input impedance and need external capacitors; a front-end exploiting positive feedback impedance boosting has the highest input impedance and is fully integrated on foil, but occupies the largest area.
Subject
High Tech Systems & Materials
Industrial Innovation
Bio-signal sensing front-end
Thin film transistor
Iindium gallium zinc oxide
Input impedance
Lownoise
To reference this document use:
http://resolver.tudelft.nl/uuid:915895d9-6aa9-4cd8-a9c9-e6622e2f2b40
TNO identifier
867078
Publisher
Institute of Physics Publishing IOP
ISSN
2058-8585
Source
Flexible and Printed Electronics, 4 (1)
Article number
14001
Document type
article