Title
Aerosol source apportionment from 1-year measurements at the CESAR tower in Cabauw, the Netherlands
Author
Schlag, P.
Kiendler-Scharr, A.
Johannes Blom, M.
Canonaco, F.
Sebastiaan Henzing, J.
Moerman, M.
Prévôt, A.S.H.
Holzinger, R.
Publication year
2016
Abstract
Intensive measurements of submicron aerosol particles and their chemical composition were performed with an Aerosol Chemical Speciation Monitor (ACSM) at the Cabauw Experimental Site for Atmospheric Research (CESAR) in Cabauw, the Netherlands, sampling at 5m height above ground. The campaign lasted nearly 1 year from July 2012 to June 2013 as part of the EU-FP7-ACTRIS project (Q-ACSM Network). Including equivalent black carbon an average particulate mass concentration of 9.50 μgm-3 was obtained during the whole campaign with dominant contributions from ammonium nitrate (45 %), organic aerosol (OA, 29 %), and ammonium sulfate (19 %). There were 12 exceedances of the World Health Organization (WHO) PM2.5 daily mean limit (25 μgm-3) observed at this rural site using PM1 instrumentation only. Ammonium nitrate and OA represented the largest contributors to total particulate matter during periods of exceedance. Source apportionment of OA was performed season-wise by positive matrix factorization (PMF) using the multilinear engine 2 (ME-2) controlled via the source finder (SoFi). Primary organic aerosols were attributed mainly to traffic (8-16% contribution to total OA, averaged season-wise) and biomass burning (0-23 %). Secondary organic aerosols (SOAs, 61-84 %) dominated the organic fraction during the whole campaign, particularly on days with high mass loadings. A SOA factor which is attributed to humic-like substances (HULIS) was identified as a highly oxidized background aerosol in Cabauw. This shows the importance of atmospheric aging processes for aerosol concentration at this rural site. Due to the large secondary fraction, the reduction of particulate mass at this rural site is challenging on a local scale. © 2016 Author(s).
Subject
Urban Mobility & Environment
CAS - Climate, Air and Sustainability
ELSS - Earth, Life and Social Sciences
Environment & Sustainability
Environment
Urbanisation
To reference this document use:
http://resolver.tudelft.nl/uuid:8ff77d0f-fa1d-4039-ac94-ba1b1ee32703
DOI
https://doi.org/10.5194/acp-16-8831-2016
TNO identifier
546225
Publisher
Copernicus GmbH
ISSN
1680-7316
Source
Atmospheric Chemistry and Physics, 16 (14), 8831-8847
Document type
article