Title
Atmospheric Pressure Plasma Enhanced Spatial ALD of ZrO2 for Low-Temperature, Large-Area Applications
Author
Mione, M.A.
Katsouras, I.
Creyghton, Y.
van Boekel, W.
Maas, J.
Gelinck, G.
Roozeboom, F.
Illiberi, A.
Publication year
2017
Abstract
High permittivity (high-k) materials have received considerable attention as alternatives to SiO2 for CMOS and low-power flexible electronics applications. In this study, we have grown high-quality ZrO2 by using atmospheric-pressure plasma-enhanced spatial ALD (PE-sALD), which, compared to temporal ALD, offers higher effective deposition rates and uses atmospheric-pressure plasma to activate surface reactions at lower temperatures. We used tetrakis(ethylmethylamino)zirconium (TEMAZ) as precursor and O2 plasma as co-reactant at temperatures between 150 and 250◦C. Deposition rates as high as 0.17 nm/cycle were achieved with N- and C- contents as low as 0.4% and 1.5%, respectively. Growth rate, film crystallinity and impurity contents in the films were found to improve with increasing deposition temperature. The measured relative permittivity lying between 18 and 28 with leakage currents in the order of 5 × 10−8 A/cm2 demonstrates that atmospheric PE-sALD is a powerful technique to deposit ultrathin, high-quality dielectrics for low-temperature, large-scale microelectronic applications.
Subject
Atomic layer deposition
Spatial ALD
Plasma enhanced
PE-sALD
Low temperature
Large scale application
Industrial Innovation
Nano Technology
HOL - Holst
TS - Technical Sciences
To reference this document use:
http://resolver.tudelft.nl/uuid:8a4926ef-1bac-4382-96f7-ff52d86b12ae
TNO identifier
782761
Source
ECS Journal of Solid State Science and Technology, 6 (6), N243-N249
Document type
article