Title
Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation
Author
TNO Kwaliteit van Leven
Verhoef, S.
Wierckx, N.
Westerhof, R.G.M.
Winde, J.H.de
Ruijssenaars, H.J.
Publication year
2009
Abstract
Two solvent-tolerant Pseudomonas putida S12 strains, originally designed for phenol and p-coumarate production, were engineered for efficient production of p-hydroxystyrene from glucose. This was established by introduction of the genes pal and pdc encoding L-phenylalanine/L-tyrosine ammonia lyase and p-coumaric acid decarboxylase, respectively. These enzymes allow the conversion of the central metabolite L-tyrosine into p-hydroxystyrene, via p-coumarate. Degradation of the p-coumarate intermediate was prevented by inactivating the fcs gene encoding feruloyl-coenzyme A synthetase. The best-performing strain was selected and cultivated in the fed-batch mode, resulting in the formation of 4.5 mM p-hydroxystyrene at a yield of 6.7% (C-mol of p-hydroxystyrene per C-mol of glucose) and a maximum volumetric productivity of 0.4 mM h-1. At this concentration, growth and production were completely halted due to the toxicity of p-hydroxystyrene. Product toxicity was overcome by the application of a second phase of 1-decanol to extract p-hydroxystyrene during fed-batch cultivation. This resulted in a twofold increase of the maximum volumetric productivity (0.75 mM h-1) and a final total p-hydroxystyrene concentration of 21 mM, which is a fourfold improvement compared to the single-phase fed-batch cultivation. The final concentration of p-hydroxystyrene in the water phase was 1.2 mM, while a concentration of 147 mM (17.6 g liter-1) was obtained in the 1-decanol phase. Thus, a P. putida S12 strain producing the low-value compound phenol was successfully altered for the production of the toxic value-added compound p-hydroxystyrene. Copyright © 2009, American Society for Microbiology. All Rights Reserved.
Subject
Biotechnology
Amino acids
Biochemical engineering
Encoding (symbols)
Gene encoding
Glucose
Phenols
Solvents
Strain
1-Decanol
Ammonia lyase
Bio productions
Concentration of
Decanol
Decarboxylase
Efficient productions
Fed batches
Fed-batch cultivations
Hydroxystyrene
L tyrosines
P-coumaric acids
Product toxicities
Pseudomonas putida
Second phase
Synthetase
Volumetric productivities
Water phase
Toxicity
alcohol
bacterium
bioengineering
enzyme activity
fermentation
gene expression
glucose
metabolite
polymer
toxicity
Carboxy-Lyases
Culture Media
Decanoic Acids
Fermentation
Glucose
Phenylalanine Ammonia-Lyase
Polystyrenes
Pseudomonas putida
Recombinant Proteins
Bacteria (microorganisms)
Pseudomonas putida
To reference this document use:
http://resolver.tudelft.nl/uuid:60c72899-9e5f-4849-87aa-5afded3c7eae
DOI
https://doi.org/10.1128/aem.02186-08
TNO identifier
241379
ISSN
0099-2240
Source
Applied and Environmental Microbiology, 75 (75), 931-936
Document type
article