Title
A finite element lower extremity and pelvis model for predicting bone injuries due to knee bolster loading
Author
van Rooij, L.
van Hoof, J.
Barbir, A.
van der Made, R.
Slaats, P.M.A.
McCann, M.J.
Ridella, S.A.
Rupp, J.D.
TNO Wegtransportmiddelen
Publication year
2004
Abstract
Injuries to the knee-thigh-hip (KTH) complex in frontal motor vehicle crashes are of substantial concern because of their frequency and potential to result in long-term disability. Current frontal impact Anthropometric Test Dummies (ATDs) have been shown to respond differently than human cadavers under frontal knee impact loading and consequently current ATDs (and FE models thereof) may lack the biofidelity needed to predict the incidence of knee, thigh, and hip injuries in frontal crashes. These concerns demand an efficient and biofidelic tool to evaluate the occurrence of injuries as a result of KTH loading in frontal crashes. The MADYMO human finite element (FE) model was therefore adapted to simulate bone deformation, articulating joints and soft tissue behavior in the KTH complex. To validate this model, the knee-femur complex response was compared to results of post-mortem human subject (PMHS) experiments where a distributed load was applied to the knee while the femoral head rested on a fixed acetabular cup. The model was also validated against experimental whole KTH response data, in which the pelvis was fixed at the iliac wings and a distributed load was applied to the knee. These experiments showed that the acetabulum is the weakest structure in typical knee bolster loading, followed by femoral head and femoral shaft. The simulations replicated the experimentally observed force-deflection response and predicted the highest stress at the experimentally observed locations of bony fracture. © 2004 SAE International.
Subject
Bone injuries pelvis model
Lower extremity model
Knee bolster loading
Acetabular cup
Anthropometric test dummies
Biofidelity
Bone injury
Complex response
Distributed loads
FE model
Femoral heads
Femoral shaft
Finite element models
Frontal crashes
Frontal impacts
Human cadaver
Human subjects
Knee impact
Lower extremity
Motor vehicle crashes
Response data
Soft tissue
Experiments
Finite element method
To reference this document use:
http://resolver.tudelft.nl/uuid:3f8fdf13-1cc4-4786-9d6d-d6198f9539c2
TNO identifier
362531
Source
Proceedings of the SAE Digital Human Modelling Symposium, Oakland, California, USA, June 15-17, 2004
Article number
SAE technical paper 2004-01-2130 04DHM-76
Document type
conference paper