Title
Biochemical ripening of dredged sediments. Part 1. Kinetics of biological organic matter mineralization and chemical sulfur oxidation
Author
Vermeulen, J.
van Gool, M.P.M.
Dorleijn, A.S.
Joziasse, J.
Bruning, H.
Rulkens, W.H.
Grotenhuis, J.T.C.
TNO Bouw en Ondergrond
Publication year
2007
Abstract
After dredged sediments have settled in a temporary upland disposal site, ripening starts, which turns waterlogged sediment into aerated soil. Aerobic biological mineralization of organic matter (OM) and chemical oxidation of reduced sulfur compounds are the major biochemical ripening processes. Quantitative data describing these processes are scarce. Therefore, aerobic oxidation and mineralization of five previously anaerobic dredged sediments were studied during a 160-d laboratory incubation experiment at 30°C. A double exponential decay model could adequately describe sulfur oxidation and OM mineralization kinetics. During the first 7 d of incubation, 23 to 80% of the total sulfur was oxidized, after which no further sulfur oxidation was observed. Oxygen used for sulfur oxidation amounted up to 95% of the total oxygen uptake in the first 7 d and up to 45% of the oxygen uptake during the entire incubation period. Mineralization rates of the rapidly mineralizable OM fractions that degraded during the first 14 to 28 d of incubation were 102 to 103 times higher than the mineralization rates of the slowly mineralizable OM during the remaining period. First-order mineralization rates of the slowly mineralizable OM were 0.22 × 10-3 to 0.54 × 10-3 d-1 and can be compared with those of terrestrial soils. Yields of biomass on substrate ranged from 0.08 to 0.45 g C biomass/g COM and appeared to be higher for rapidly mineralizing OM than for slowly mineralizing OM. The results of this study can be used to optimize conditions during temporary disposal of sediments, to estimate the potential decrease in OM, and for future studies on the possible link between OM mineralization and degradation of hydrophobic organic contaminants. © 2007 SETAC.
Subject
Geosciences
Biochemical ripening
Biomass yield
Mineralization kinetics
Organic matter
Sulfur oxidation kinetics
Biomass
Dredges
Oxidation
Reaction kinetics
Sediments
Sulfur
Biochemical ripening
Biomass yield
Chemical sulfur oxidation
Dredged sediments
Mineralization kinetics
Biological materials
organic matter
sulfur
dredging
kinetics
mineralization
organic matter
oxidation
sediment
sulfur
article
biomass
kinetics
mineralization
oxidation
priority journal
sediment
Carbon
Environmental Monitoring
Geologic Sediments
Kinetics
Nitrogen
Oxidation-Reduction
Oxygen
Phosphorus
Soil
Solutions
Sulfur
Time Factors
To reference this document use:
http://resolver.tudelft.nl/uuid:3730c3a3-90a3-42f6-85cf-b7dba285ce63
TNO identifier
240485
ISSN
0730-7268
Source
Environmental Toxicology and Chemistry, 26 (12), 2530-2539
Document type
article