Title
Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: A possible mechanism through which age is a risk factor for osteoarthritis
Author
Verzijl, N.
de Groot, J.
Zaken, C.B.
Braun-Benjamin, O.
Maroudas, A.
Bank, R.A.
Mizrahi, J.
Schalkwijk, C.G.
Thorpe, S.R.
Baynes, J.W.
Bijlsma, J.W.J.
Lafeber, F.P.J.G.
TeKoppele, J.M.
Gaubius Instituut TNO
Publication year
2002
Abstract
Objective. Age is an important risk factor for osteoarthritis (OA). During aging, nonenzymatic glycation results in the accumulation of advanced glycation end products (AGEs) in cartilage collagen. We studied the effect of AGE crosslinking on the stiffness of the collagen network in human articular cartilage. Methods. To increase AGE levels, human adult articular cartilage was incubated with threose. The stiffness of the collagen network was measured as the instantaneous deformation (ID) of the cartilage and as the change in tensile stress in the collagen network as a function of hydration (osmotic stress technique). AGE levels in the collagen network were determined as: Nε-(carboxy[m]ethyl)lysine, pentosidine, amino acid modification (loss of arginine and [hydroxy-]lysine), AGE fluorescence (360/460 nm), and digestibility by bacterial collagenase. Results. Incubation of cartilage with threose resulted in a dose-dependent increase in AGEs and a concomitant decrease in ID (r = -0.81, P < 0.001; up to a 40% decrease at 200 mM threose), i.e., increased stiffness, which was confirmed by results from the osmotic stress technique. The decreased ID strongly correlated with AGE levels (e.g., AGE fluorescence r = -0.81, P < 0.0001). Coincubation with arginine or lysine (glycation inhibitors) attenuated the threose-induced decrease in ID (P < 0.05). Conclusion. Increasing cartilage AGE crosslinking by in vitro incubation with threose resulted in increased stiffness of the collagen network. Increased stiffness by AGE crosslinking may contribute to the age-related failure of the collagen network in human articular cartilage to resist damage. Thus, the age-related accumulation of AGE crosslinks presents a putative molecular mechanism whereby age is a predisposing factor for the development of OA.
Subject
Health Biology
Biomedical Research
6 n carboxymethyllysine
Advanced glycation end product
Arginine
Collagen
Collagenase
Hydroxylysine
Pentosidine
Adult
Aging
Articular cartilage
Controlled study
Human
Human tissue
Hydration
Joint stiffness
Osmotic stress
Osteoarthritis
Priority journal
Protein cross linking
Protein glycosylation
Adult
Aging
Arginine
Cartilage, Articular
Collagen
Cross-Linking Reagents
Glycosylation End Products, Advanced
Humans
Lysine
Osteoarthritis
Pyruvaldehyde
Regression Analysis
Ribose
Stress, Mechanical
Tetroses
To reference this document use:
http://resolver.tudelft.nl/uuid:335cc428-0fd0-4046-a057-e9831c7bceee
DOI
https://doi.org/10.1002/1529-0131(200201)46:1<114::aid-art10025>3.0.co;2-p
TNO identifier
236462
ISSN
0004-3591
Source
Arthritis and Rheumatism, 46 (1), 114-123
Document type
article