Title
Lane change manoeuvres and safety margins
Author
van Winsum, W.
de Waard, D.
Brookhuis, K.A.
Publication year
1999
Abstract
The relation between perceptual information and the motor response during lane-change manoeuvres was studied in a fixed-based driving simulator. Eight subjects performed 48 lane changes with varying vehicle speed, lane width and direction of movement. Three sequential phases of the lane change manoeuvre are distinguished. During the first phase the steering wheel is turned to a maximum angle. After this the steering wheel is turned to the opposite direction. The second phase ends when the vehicle heading approaches a maximum that generally occurs at the moment the steering wheel angle passes through zero. During the third phase the steering wheel is turned to a second maximum steering wheel angle in opposite direction to stabilise the vehicle in the new lane. Duration of the separate phases were analysed together with steering amplitudes and Time-to-Line Crossing in order to test whether and how drivers use the outcome of each phase during the lane change manoeuvre to adjust the way the subsequent phase is executed. During the first phase the time margin to the outer lane boundary was controlled by the driver such that a higher speed was compensated for by a smaller steering wheel amplitude. Due to this mechanism the time margin to the lane boundary was not affected by vehicle speed. During the second phase the speed with which the steering wheel was turned to the opposite direction was affected by the time margins to the lane boundary at the start of the second phase. Thereafter, smaller minimum time margins were compensated for by a larger steering wheel amplitude to the opposite direction. The results suggest that steering actions are controlled by the outcome of previous actions in such a way that safety margins are maintained. The results also suggest that visual feedback is used by the driver during lane change manoeuvres to control steering actions, resulting in flexible and adaptive steering behaviour. Evidence is presented in support of the idea that temporal information on the relation between the vehicle and lane boundaries is used by the driver in order to control the motor response.
Subject
Traffic
Traffic
Lane changing
Safety margins
Tlc
To reference this document use:
http://resolver.tudelft.nl/uuid:2be3f5e3-2cb5-4ee3-80e4-88026562e2a4
TNO identifier
9597
Source
Transportation Research Part F, 2 (3), 139-149
Document type
article