Title
Data-Driven optimization of intermittent gas production in mature fields assisted by deep learning and a population-based global optimizer
Author
Gómez, J.F.
Shoeibi Omrani, P.S.
Belfroid, S.P.C.
Publication year
2021
Abstract
In gas wells, decreased/unstable production can occur due to difficult-to-predict dynamic effects resulted from late-life phenomena, such as liquid loading and flooding. To minimize the negative impact of these effects, maximize production and extend the wells’ lifetime, wells are often operated in an intermittent production regime. The goal of this work is to find the optimum production and shut-in cycles to maximize intermittent gas production as a decision support to operators. A framework suitable for single and multiple wells was developed by coupling a Deep Learning forward model trained on historical data with a population-based global optimizer, Particle Swarm Optimization(PSO). The forward model predicts the production rates and wellhead pressure during production and shut-in conditions, respectively. The PSO algorithm optimizes the operational criteria given operational andenvironmental objectives, such as maximizing production, minimizing start-up/shut-in actions, penalizingemissions under several constraints such as planned maintenances and meeting a contract production value. The accuracy of the Deep Learning models was tested on synthetic and field data. On synthetic data, mature wells were tested under different reservoir conditions such as initial water saturation, permeability and flow regimes. The relative errors in the predicted total cumulative production ranged between 0.5 and 4.6% for synthetic data and 0.9% for field data. The mean errors for pressure prediction were of 2-3 bar. The optimization framework was benchmarked for production optimization and contract value matching for a single-well (on field data) and a cluster of wells (synthetic data). Single-well production optimization of a North Sea well achieved a 3% production increase, including planned maintenances. Production optimization for six wells resulted in a 21% production increase for a horizon of 30 days, while contract value matching yielded 29/30 values within 3% of the target. The most optimum, repeatable and computationally efficient results were obtained using critical pressure/gas flowrates as operational criteria. This could enable real-time gas production optimization and operational decision-making in a wide range of well conditions and operational requirements.
Subject
Decision support systems
Oil wells
Particle swarm optimization (PSO)
Petroleum reservoir evaluation
Population statistics
Scheduled maintenance
Contract values
Field data
Forward modeling
Gas productions
Global optimizer
Production optimization
Single well
Synthetic data
Global optimization
Industrial Innovation
To reference this document use:
http://resolver.tudelft.nl/uuid:078a9808-725b-42d4-a5c8-1432547d4eec
TNO identifier
959526
Publisher
Society of Petroleum Engineers SPE
Source
2021 SPE Annual Technical Conference and Exhibition, Dubai, UAE, 21-23 September 2021
Document type
conference paper