Title
A knowledge base for robots to model the real-world as a hypergraph
Author
Sijs, J.
Fletcher, J.
Publication year
2021
Abstract
Robotic systems operating in the real world would benefit from a clear semantic model to understand the real world. Such semantics are typically captured in a knowledge structure. The speed at which robots need to update their real-world knowledge (because of new sensory observations) prevented the use of complex knowledge structures, due to which they typically rely on hierarchical structures and triples. However, the shift from automated to autonomous robotics implied that more knowledge about the real-world is necessary, thereby requiring many work-arounds to maintain such a hierarchical knowledge base. To remove such work-arounds, this article adopts the richer hypergraph model for creating an actual knowledge base implemented on a real robotic system. Experiments show that the use of a hypergraph, without any work-arounds, still allows real-time updates of the knowledgebase with actual information extracted from the robot’s sensors.
Subject
hypergraph
knowledge base
world model
Robotics
Robots
Semantics
Autonomous robotics
Hierarchical knowledge
Hierarchical structures
Hyper graph
Knowledge structures
Real-world
Robotic systems
Semantic modelling
World knowledge
World model
Knowledge based systems
To reference this document use:
http://resolver.tudelft.nl/uuid:bd620f5c-84ff-4416-8cb2-f200ae117f58
TNO identifier
968062
Publisher
Institute of Electrical and Electronics Engineers Inc.
ISBN
9781665434164
Source
Proceedings - 2021 5th IEEE International Conference on Robotic Computing, IRC 2021, 5th IEEE International Conference on Robotic Computing, IRC 2021, 15 November 2021 through 17 November 2021, 119-120
Document type
conference paper