Title
Development and evaluation of multi-agent models predicting Twitter trends in multiple domains
Author
Attema, T.
van Maanen, P.P.
Meeuwissen, E.
Contributor
Pei, J. (editor)
Tang, J. (editor)
Silvestri, F. (editor)
Publication year
2015
Abstract
This paper concerns multi-agent models predicting Twitter trends. We use a step-wise approach to develop a novel agent-based model with the following properties: (1) it uses individual behavior parameters for a set of Twitter users and (2) it uses a retweet graph to model the underlying social network structure of these Twitter users to predict trends. The model parameters can be optimized using empirical data. To investigate to what extend this agent-based model can predict Twitter trends, we validate the model performance on two case studies using real Twitter data: tweets on banks and tweets on universities. We furthermore compare a version of the model that only uses the retweet graph (PM1) with the model that also simulates individual behavior (PM2) for small to larger prediction time intervals. For both case studies the results show that PM1 performs better for small prediction time intervals (up to one day in the future), while PM2 performs better for larger time intervals (from a day to a week). We think this opens up the possibility to use similar models for helping organizations to extend their monitoring capabilities of social media with predictive modeling and to become more pro-active and less reactive. © 2015 ACM.
Subject
Human & Operational Modelling
PCS - Perceptual and Cognitive Systems
ELSS - Earth, Life and Social Sciences
Banking sector
Multi-agent models
Trend prediction
Twitter
Universities
Autonomous agents
Computational methods
Forecasting
Multi agent systems
Societies and institutions
Banking sectors
Multi-Agent Model
Trend prediction
Twitter
Universities
Social networking (online)
To reference this document use:
http://resolver.tudelft.nl/uuid:184e8ad8-47a5-4008-9db7-9e94b0139076
DOI
https://doi.org/10.1145/2808797.2808858
TNO identifier
534858
Publisher
Association for Computing Machinery, Inc
ISBN
9781450338547
Source
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2015, 25 August 2015 through 28 August 2015, 1133-1140
Document type
conference paper